Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.552
Filtrar
1.
Sci Rep ; 14(1): 6229, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486006

RESUMO

Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.


Assuntos
Cálcio , Fenotiazinas , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Cálcio/metabolismo , Trombina/metabolismo , Sinalização do Cálcio , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária , Cálcio da Dieta/farmacologia , Agregação Plaquetária
2.
FASEB J ; 38(4): e23468, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334433

RESUMO

The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Proteínas Quinases/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Ativação Plaquetária/fisiologia , Plaquetas/metabolismo , Endotélio/metabolismo , Prostaglandinas I
3.
Platelets ; 35(1): 2308635, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345065

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) restricts platelet activation via platelet collagen receptor GPVI/FcRγ-chain. In this study, screening against collagen-induced platelet aggregation was performed to identify functional CEACAM1 extracellular domain fragments. CEACAM1 fragments, including Ala-substituted peptides, were synthesized. Platelet assays were conducted on healthy donor samples for aggregation, cytotoxicity, adhesion, spreading, and secretion. Mice were used for tail bleeding and FeCl3-induced thrombosis experiments. Clot retraction was assessed using platelet-rich plasma. Extracellular segments of CEACAM1 and A1 domain-derived peptide QDTT were identified, while N, A2, and B domains showed no involvement. QDTT inhibited platelet aggregation. Ala substitution for essential amino acids (Asp139, Thr141, Tyr142, Trp144, and Trp145) in the QDTT sequence abrogated collagen-induced aggregation inhibition. QDTT also suppressed platelet secretion and "inside-out" GP IIb/IIIa activation by convulxin, along with inhibiting PI3K/Akt pathways. QDTT curtailed FeCl3-induced mesenteric thrombosis without significantly prolonging bleeding time, implying the potential of CEACAM1 A1 domain against platelet activation without raising bleeding risk, thus paving the way for novel antiplatelet drugs.


What is the context? The study focuses on Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and its role in platelet activation, particularly through the GPVI/FcRγ-chain pathway.The research aims to identify specific fragments of CEACAM1's extracellular domain that could restrict platelet activation, without increasing bleeding risk.What is new? The researchers identified a peptide called QDTT derived from the A1 domain of CEACAM1's extracellular segment. This peptide demonstrated the ability to inhibit platelet aggregation, secretion, and GP IIb/IIIa activation.The study also revealed that specific amino acids within the QDTT sequence were essential for its inhibitory effects on collagen-induced aggregation.What is the impact? The findings suggest that the A1 domain-derived peptide QDTT from CEACAM1 could serve as a potential basis for developing novel antiplatelet drugs. This peptide effectively limits platelet activation and aggregation without significantly prolonging bleeding time, indicating a promising approach to managing thrombosis and related disorders while minimizing bleeding risks.


Assuntos
60508 , Cloretos , Compostos Férricos , Trombose , Camundongos , Animais , Glicoproteínas da Membrana de Plaquetas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Plaquetária , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/metabolismo , Peptídeos/farmacologia , Colágeno/farmacologia , Trombose/metabolismo
4.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330730

RESUMO

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Assuntos
Furina , Hemina , Glicoproteínas da Membrana de Plaquetas , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Glicoproteínas de Membrana Associadas ao Lisossomo , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30/metabolismo , Humanos
5.
J Thromb Haemost ; 22(1): 271-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37813196

RESUMO

BACKGROUND: Clustering of the receptors glycoprotein receptor VI (GPVI), C-type lectin-like receptor 2 (CLEC-2), low-affinity immunoglobulin γ Fc region receptor II-a (FcγRIIA), and platelet endothelial aggregation receptor 1 (PEAR1) leads to powerful activation of platelets through phosphorylation of tyrosine in their cytosolic tails and initiation of downstream signaling cascades. GPVI, CLEC-2, and FcγRIIA signal through YxxL motifs that activate Syk. PEAR1 signals through a YxxM motif that activates phosphoinositide 3-kinase. Current ligands for these receptors have an undefined valency and show significant batch variation and, for some, uncertain specificity. OBJECTIVES: We have raised nanobodies against each of these receptors and multimerized them to identify the minimum number of epitopes to achieve robust activation of human platelets. METHODS: Divalent and trivalent nanobodies were generated using a flexible glycine-serine linker. Tetravalent nanobodies utilize a mouse Fc domain (IgG2a, which does not bind to FcγRIIA) to dimerize the divalent nanobody. Ligand affinity measurements were determined by surface plasmon resonance. Platelet aggregation, adenosine triphosphate secretion, and protein phosphorylation were analyzed using standardized methods. RESULTS: Multimerization of the nanobodies led to a stepwise increase in affinity with divalent and higher-order nanobody oligomers having sub-nanomolar affinity. The trivalent nanobodies to GPVI, CLEC-2, and PEAR1 stimulated powerful and robust platelet aggregation, secretion, and protein phosphorylation at low nanomolar concentrations. A tetravalent nanobody was required to activate FcγRIIA with the concentration-response relationship showing a greater variability and reduced sensitivity compared with the other nanobody-based ligands, despite a sub-nanomolar binding affinity. CONCLUSION: The multivalent nanobodies represent a series of standardized, potent agonists for platelet glycoprotein receptors. They have applications as research tools and in clinical assays.


Assuntos
Glicoproteínas de Membrana , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Glicoproteínas de Membrana/metabolismo , Ligantes , Fosfatidilinositol 3-Quinases/metabolismo , Anticorpos de Domínio Único/metabolismo , Quinase Syk , Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Agregação Plaquetária , Lectinas Tipo C/metabolismo , Ativação Plaquetária , Receptores de Superfície Celular/metabolismo
6.
J Thromb Haemost ; 21(12): 3619-3632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678551

RESUMO

BACKGROUND: Upon vessel injury, platelets adhere to exposed matrix constituents via specific membrane receptors, including the von Willebrand factor receptor glycoprotein (GP)Ib-IX-V complex and integrins ß1 and ß3. In platelets, the Fes/CIP4-homology Bin-Amphiphysin-Rvs protein PACSIN2 associates with the cytoskeletal and scaffolding protein filamin A (FlnA), linking GPIbα and integrins to the cytoskeleton. OBJECTIVES: Here we investigated the role of PACSIN2 in platelet function. METHODS: Platelet parameters were evaluated in mice lacking PACSIN2 and platelet integrin ß1. RESULTS: Pacsin2-/- mice displayed mild thrombocytopenia, prolonged bleeding time, and delayed thrombus formation in a ferric chloride-mediated carotid artery injury model, which was normalized by injection of control platelets. Pacsin2-/- platelets formed unstable thrombi that embolized abruptly in a laser-induced cremaster muscle injury model. Pacsin2-/- platelets had hyperactive integrin ß1, as evidenced by increased spreading onto surfaces coated with the collagen receptor α2ß1-specific peptide GFOGER and increased binding of the antibody 9EG7 directed against active integrin ß1. By contrast, Pacsin2-/- platelets had normal integrin αIIbß3 function and expressed P-selectin normally following stimulation through the collagen receptor GPVI or with thrombin. Deletion of platelet integrin ß1 in Pacsin2-/- mice normalized platelet count, hemostasis, and thrombus formation. A PACSIN2 peptide mimicking the FlnA-binding site mediated the pull-down of a FlnA rod 2 construct by integrin ß7, a model for integrin ß-subunits. CONCLUSIONS: Pacsin2-/- mice displayed severe thrombus formation defects due to hyperactive platelet integrin ß1. The data suggest that PACSIN2 binding to FlnA negatively regulates platelet integrin ß1 hemostatic function.


Assuntos
Integrina beta1 , Ativação Plaquetária , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Hemostasia , Hemostáticos/metabolismo , Integrina beta1/metabolismo , Peptídeos/farmacologia , Adesividade Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Trombose/metabolismo
7.
Biophys J ; 122(18): 3738-3748, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37434354

RESUMO

Upon vascular injury, platelets form a hemostatic plug by binding to the subendothelium and to each other. Platelet-to-matrix binding is initially mediated by von Willebrand factor (VWF) and platelet-to-platelet binding is mediated mainly by fibrinogen and VWF. After binding, the actin cytoskeleton of a platelet drives its contraction, generating traction forces that are important to the cessation of bleeding. Our understanding of the relationship between adhesive environment, F-actin morphology, and traction forces is limited. Here, we examined F-actin morphology of platelets attached to surfaces coated with fibrinogen and VWF. We identified distinct F-actin patterns induced by these protein coatings and found that these patterns were identifiable into three classifications via machine learning: solid, nodular, and hollow. We observed that traction forces for platelets were significantly higher on VWF than on fibrinogen coatings and these forces varied by F-actin pattern. In addition, we analyzed the F-actin orientation in platelets and noted that their filaments were more circumferential when on fibrinogen coatings and having a hollow F-actin pattern, while they were more radial on VWF and having a solid F-actin pattern. Finally, we noted that subcellular localization of traction forces corresponded to protein coating and F-actin pattern: VWF-bound, solid platelets had higher forces at their central region while fibrinogen-bound, hollow platelets had higher forces at their periphery. These distinct F-actin patterns on fibrinogen and VWF and their differences in F-actin orientation, force magnitude, and force localization could have implications in hemostasis, thrombus architecture, and venous versus arterial thrombosis.


Assuntos
Hemostáticos , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Fibrinogênio/metabolismo , Plaquetas/metabolismo , Actinas/metabolismo , Tração , Glicoproteínas da Membrana de Plaquetas/metabolismo , Hemostáticos/metabolismo , Citoesqueleto de Actina/metabolismo
8.
J Biol Chem ; 299(7): 104865, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268160

RESUMO

Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated. We observed that Syk Y346 in mouse platelets was still phosphorylated when GPVI-induced Syk activity was inhibited. We then generated Syk Y346F mice and analyzed the effect this mutation exerts on platelet responses. Syk Y346F mice bred normally, and their blood cell count was unaltered. We did observe potentiation of GPVI-induced platelet aggregation and ATP secretion as well as increased phosphorylation of other tyrosines on Syk in the Syk Y346F mouse platelets when compared to WT littermates. This phenotype was specific for GPVI-dependent activation, since it was not seen when AYPGKF, a PAR4 agonist, or 2-MeSADP, a purinergic receptor agonist, was used to activate platelets. Despite a clear effect of Syk Y346F on GPVI-mediated signaling and cellular responses, there was no effect of this mutation on hemostasis as measured by tail-bleeding times, although the time to thrombus formation determined using the ferric chloride injury model was reduced. Thus, our results indicate a significant effect of Syk Y346F on platelet activation and responses in vitro and reveal its complex nature manifesting itself by the diversified translation of platelet activation into physiological responses.


Assuntos
Plaquetas , Agregação Plaquetária , Quinase Syk , Animais , Camundongos , Fosforilação , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Quinase Syk/genética , Quinase Syk/metabolismo , Tirosina
9.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381987

RESUMO

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Assuntos
Proteínas de Transporte de Cátions , Homeostase , Infarto da Artéria Cerebral Média , AVC Isquêmico , Trombose , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Cálcio/metabolismo , Cátions/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , Magnésio/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Canal de Cátion TRPC6/metabolismo , Proteínas de Transporte de Cátions/deficiência
10.
J Thromb Haemost ; 21(8): 2260-2267, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150294

RESUMO

BACKGROUND: Collagen-induced platelet activation is predominantly mediated by glycoprotein (GP) VI through formation of receptor clusters that coincide with the accumulation of signaling molecules and are hypothesized to drive strong and sustained platelet activation. OBJECTIVES: To determine the importance of GPVI clusters for thrombus formation in whole blood under shear. METHODS: We utilized whole blood microfluidics and an anti-GPVI nanobody (Nb), Nb28, labeled with AlexaFluor 488, to assess the distribution of GPVI on the surface of platelets adhering to a range of collagen-like substrates with different platelet activation potentials. RESULTS: Automated analysis of GPVI surface distribution on platelets supported the hypothesis that there is a relationship between GPVI cluster formation, thrombus size, and phosphatidylserine (PS) exposure. Substrates that supported the formation of macroclusters also induced significantly bigger aggregates, with increased amounts of PS-exposing platelets in comparison to substrates where no GPVI clusters were detected. Furthermore, we demonstrate that only direct inhibition of GPVI binding, but not of downstream signaling, is able to disrupt cluster formation. CONCLUSION: Labeled anti-GPVI Nb28 permits visualization of GPVI clustering under flow conditions. Furthermore, whilst inhibition of downstream signaling does not affect clustering, it does prevent thrombus formation. Therefore, GPVI macroclustering is a prerequisite for thrombus formation and platelet activation, namely, PS exposure, on highly GPVI-dependent collagen surfaces.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ativação Plaquetária , Colágeno/metabolismo , Agregação Plaquetária
11.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175486

RESUMO

Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.


Assuntos
Proteína Quinase C , Proteína Fosfatase 2 , Humanos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Plaquetas/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Proteína Fosfatase 2/metabolismo , Quinase Syk/metabolismo
12.
Thromb Haemost ; 123(7): 679-691, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037200

RESUMO

INTRODUCTION: Hemolysis results in release of free hemoglobin and hemin liberation from erythrocytes. Hemin has been described to induce platelet activation and to trigger thrombosis. METHODS: We evaluated the effect of hemin on platelet function and surface expression of the platelet collagen receptor glycoprotein VI (GPVI). Isolated platelets were stimulated with increasing concentrations of hemin. RESULTS: We found that hemin strongly enhanced platelet activation, aggregation, and aggregate formation on immobilized collagen under flow. In contrast, we found that surface expression of GPVI was significantly reduced upon hemin stimulation with high hemin concentrations indicating that hemin-induced loss of surface GPVI does not hinder platelet aggregation. Loss of hemin-induced surface expression of GPVI was caused by shedding of the ectodomain of GPVI as verified by immunoblotting and is independent of the GPVI or CLEC-2 mediated ITAM (immunoreceptor-tyrosine-based-activation-motif) signaling pathway as inhibitor studies revealed. Hemin-induced GPVI shedding was independent of metalloproteinases such as ADAM10 or ADAM17, which were previously described to regulate GPVI degradation. Similarly, concentration-dependent shedding of CD62P was also induced by hemin. Unexpectedly, we found that the subtilisin-like proprotein convertase furin controls hemin-dependent GPVI shedding as shown by inhibitor studies using the specific furin inhibitors SSM3 and Hexa-D-arginine. In the presence of SSM3 and Hexa-D-arginine, hemin-associated GPVI degradation was substantially reduced. Further, SSM3 inhibited hemin-induced but not CRP-XL-induced platelet aggregation and thrombus formation, indicating that furin controls specifically hemin-associated platelet functions. CONCLUSION: In summary, we describe a novel mechanism of hemin-dependent GPVI shedding and platelet function mediated by furin.


Assuntos
Furina , Hemina , Humanos , Hemina/farmacologia , Hemina/metabolismo , Furina/metabolismo , Furina/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Ativação Plaquetária
13.
J Thromb Haemost ; 21(7): 1703-1713, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990158

RESUMO

Platelets play a central role in the arrest of bleeding. The ability of platelets to engage with extracellular matrix proteins of the subendothelium has long been recognized as a pivotal platelet attribute, underpinning adequate hemostasis. The propensity of platelets to rapidly bind and functionally respond to collagen was one of the earliest documented events in platelet biology. The receptor primarily responsible for mediating platelet/collagen responses was identified as glycoprotein (GP) VI and successfully cloned in 1999. Since that time, this receptor has held the attention of many research groups, and through these efforts, we now have an excellent understanding of the roles of GPVI as a platelet- and megakaryocyte-specific adheso-signaling receptor in platelet biology. GPVI is considered a viable antithrombotic target, as data obtained from groups across the world is consistent with GPVI being less involved in physiological hemostatic processes but participating in arterial thrombosis. This review will highlight the key aspects of GPVI contributions to platelet biology and concentrate on the interaction with recently identified ligands, with a focus on fibrin and fibrinogen, discussing the role of these interactions in the growth and stability of thrombi. We will also discuss important therapeutic developments that target GPVI to modulate platelet function while minimizing bleeding outcomes.


Assuntos
Fibrina , Ativação Plaquetária , Trombose , Humanos , Plaquetas/metabolismo , Colágeno/metabolismo , Fibrina/metabolismo , Hemorragia/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/metabolismo
14.
Sci Rep ; 13(1): 3906, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890261

RESUMO

Receptor diffusion plays an essential role in cellular signalling via the plasma membrane microenvironment and receptor interactions, but the regulation is not well understood. To aid in understanding of the key determinants of receptor diffusion and signalling, we developed agent-based models (ABMs) to explore the extent of dimerisation of the platelet- and megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI). This approach assessed the importance of glycolipid enriched raft-like domains within the plasma membrane that lower receptor diffusivity. Our model simulations demonstrated that GPVI dimers preferentially concentrate in confined domains and, if diffusivity within domains is decreased relative to outside of domains, dimerisation rates are increased. While an increased amount of confined domains resulted in further dimerisation, merging of domains, which may occur upon membrane rearrangements, was without effect. Modelling of the proportion of the cell membrane which constitutes lipid rafts indicated that dimerisation levels could not be explained by these alone. Crowding of receptors by other membrane proteins was also an important determinant of GPVI dimerisation. Together, these results demonstrate the value of ABM approaches in exploring the interactions on a cell surface, guiding the experimentation for new therapeutic avenues.


Assuntos
Plaquetas , Glicoproteínas da Membrana de Plaquetas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Colágeno/metabolismo , Microdomínios da Membrana/metabolismo
15.
Thromb Haemost ; 123(6): 597-612, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807826

RESUMO

BACKGROUND: In secondary cardiovascular disease prevention, treatments blocking platelet-derived secondary mediators pose a risk of bleeding. Pharmacological interference of the interaction of platelets with exposed vascular collagens is an attractive alternative, with clinical trials ongoing. Antagonists of the collagen receptors, glycoprotein VI (GPVI), and integrin α2ß1, include recombinant GPVI-Fc dimer construct Revacept, 9O12 mAb based on the GPVI-blocking reagent Glenzocimab, Syk tyrosine-kinase inhibitor PRT-060318, and anti-α2ß1 mAb 6F1. No direct comparison has been made of the antithrombic potential of these drugs. METHODS: Using a multiparameter whole-blood microfluidic assay, we compared the effects of Revacept, 9O12-Fab, PRT-060318, or 6F1 mAb intervention with vascular collagens and collagen-related substrates with varying dependencies on GPVI and α2ß1. To inform on Revacept binding to collagen, we used fluorescent-labelled anti-GPVI nanobody-28. RESULTS AND CONCLUSION: In this first comparison of four inhibitors of platelet-collagen interactions with antithrombotic potential, we find that at arterial shear rate: (1) the thrombus-inhibiting effect of Revacept was restricted to highly GPVI-activating surfaces; (2) 9O12-Fab consistently but partly inhibited thrombus size on all surfaces; (3) effects of GPVI-directed interventions were surpassed by Syk inhibition; and (4) α2ß1-directed intervention with 6F1 mAb was strongest for collagens where Revacept and 9O12-Fab were limitedly effective. Our data hence reveal a distinct pharmacological profile for GPVI-binding competition (Revacept), GPVI receptor blockage (9O12-Fab), GPVI signaling (PRT-060318), and α2ß1 blockage (6F1 mAb) in flow-dependent thrombus formation, depending on the platelet-activating potential of the collagen substrate. This work thus points to additive antithrombotic action mechanisms of the investigated drugs.


Assuntos
Integrina alfa2beta1 , Trombose , Humanos , Integrina alfa2beta1/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Fibrinolíticos/farmacologia , Colágeno/metabolismo , Plaquetas/metabolismo , Trombose/prevenção & controle
16.
J Thromb Haemost ; 21(5): 1289-1306, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754678

RESUMO

BACKGROUND: Especially in disease conditions, platelets can encounter activating agents in circulation. OBJECTIVES: To investigate the extent to which previously activated platelets can be reactivated and whether in-and reactivation applies to different aspects of platelet activation and thrombus formation. METHODS: Short-and long-term effects of glycoprotein VI (GPVI) and G protein-coupled receptor (GPCR) stimulation on platelet activation and aggregation potential were compared via flow cytometry and plate-based aggregation. Using fluorescence and electron microscopy, we assessed platelet morphology and content, as well as thrombus formation. RESULTS: After 30 minutes of stimulation with thrombin receptor activator peptide 6 (TRAP6) or adenosine diphosphate (ADP), platelets secondarily decreased in PAC-1 binding and were less able to aggregate. The reversibility of platelets after thrombin stimulation was concentration dependent. Reactivation was possible via another receptor. In contrast, cross-linked collagen-related peptide (CRP-XL) or high thrombin stimulation evoked persistent effects in αIIbß3 activation and platelet aggregation. However, after 60 minutes of CRP-XL or high thrombin stimulation, when αIIbß3 activation slightly decreased, restimulation with ADP or CRP-XL, respectively, increased integrin activation again. Compatible with decreased integrin activation, platelet morphology was reversed. Interestingly, reactivation of reversed platelets again resulted in shape change and if not fully degranulated, additional secretion. Moreover, platelets that were previously activated with TRAP6 or ADP regained their potential to contribute to thrombus formation under flow. On the contrary, prior platelet triggering with CRP-XL was accompanied by prolonged platelet activity, leading to a decreased secondary platelet adhesion under flow. CONCLUSION: This work emphasizes that prior platelet activation can be reversed, whereafter platelets can be reactivated through a different receptor. Reversed, previously activated platelets can contribute to thrombus formation.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombose , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo , Receptores de Trombina/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo
17.
Mol Immunol ; 155: 27-43, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682136

RESUMO

AIM: Previously, we revealed a crucial role of 5-HT degradation system (5DS), consisting of 5-HT2A receptor (5-HT2AR), 5-HT synthases and monoamine oxidase A (MAO-A), in ischemia-reperfusion (IR)-caused organ injury. Whereas, platelet activating factor receptor (PAFR) also mediates myocardial ischemia-reperfusion injury (MIRI). Here, we try to clarify the relationship between 5DS and PAFR in mediating MIRI. METHODS: H9c2 cell injury and rat MIRI were caused by hypoxia/reoxygenation (H/R) or PAF, and by ligating the left anterior descending coronary artery then untying, respectively. 5-HT2AR and PAFR antagonists [sarpogrelate hydrochloride (SH) and BN52021], MAO-A, AKT, mTOR and 5-HT synthase inhibitors (clorgyline, perifosine, rapamycin and carbidopa), and gene-silencing PKCε were used in experiments RESULTS: The mitochondrial ROS production, respiratory chain damage, inflammation, apoptosis and myocardial infarction were significantly prevented by BN52021, SH and clorgyline in H/R and PAF-treated cells and in IR myocardium. BN52021 also significantly suppressed the upregulation of PAFR, 5-HT2AR, 5-HT synthases and MAO-A expression (mRNA and protein), and Gαq and PKCε (in plasmalemma) expression induced by H/R, PAF or IR; the effects of SH were similar to that of BN52021 except for no affecting the expression of PAFR and 5-HT2AR. Gene-silencing PKCε suppressed H/R and PAF-induced upregulation of 5-HT synthases and MAO-A expression in cells; perifosine and rapamycin had not such effects; however, clorgyline suppressed H/R and PAF-induced phosphorylation of AKT and mTOR. CONCLUSION: MIRI is probably due to PAFR-mediated 5-HT2AR activation, which further activates PKCε-mediated 5-HT synthesis and degradation, leading to mitochondrial ROS production.


Assuntos
Traumatismo por Reperfusão Miocárdica , Glicoproteínas da Membrana de Plaquetas , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G , Serotonina , Animais , Ratos , Apoptose , Clorgilina/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Serina-Treonina Quinases TOR/metabolismo
18.
J Thromb Haemost ; 21(2): 317-328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36700508

RESUMO

BACKGROUND: The platelet-signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. The Nb2 binding site has been mapped to the D1 domain, which is directly adjacent to the CRP binding site. Ligand-binding complementary determining region 3 has only 15% conservation between all 3 Nbs. OBJECTIVES: To map the binding sites of Nb21 and Nb35 on GPVI. METHODS: We determined the X-ray crystal structure of the D1 and D2 extracellular domains of the GPVI-Nb35 complex. We then looked at the effects of various GPVI mutations on the ability of Nbs to inhibit collagen binding and GPVI signaling using surface binding assays and transfected cell lines. RESULTS: The crystal structure of GPVI bound to Nb35 was solved. GPVI was present as a monomer, and the D1+D2 conformation was comparable to that in the dimeric structure. Arg46, Tyr47, and Ala57 are common residues on GPVI targeted by both Nb2 and Nb35. Mutating Arg46 to an Ala abrogated the ability of Nb2, Nb21, and Nb35 to inhibit collagen-induced GPVI signaling and blocked the binding of all 3 Nbs. In addition, Arg60 was found to reduce Nb21 inhibition but not the inhibition Nb2 or Nb35. CONCLUSIONS: These findings reveal key residues involved in the high-affinity binding of GPVI inhibitors and negate the idea that GPVI dimerization induces a conformational change required for ligand binding.


Assuntos
Colágeno , Glicoproteínas da Membrana de Plaquetas , Humanos , Dimerização , Ligação Proteica , Ligantes , Glicoproteínas da Membrana de Plaquetas/metabolismo , Sítios de Ligação , Colágeno/metabolismo , Plaquetas/metabolismo
19.
J Thromb Haemost ; 21(3): 667-681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696196

RESUMO

BACKGROUND: The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES: To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS: Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS: GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION: Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbß3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.


Assuntos
Fibrina , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Eptifibatida/farmacologia , Fibrina/química , Glicoproteínas da Membrana de Plaquetas/metabolismo
20.
Br J Pharmacol ; 180(3): 287-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36166754

RESUMO

BACKGROUND AND PURPOSE: Thrombosis is a major cause of morbidity and mortality worldwide. Platelet activation by exposed collagen through glycoprotein VI (GPVI) and formation of neutrophil extracellular traps (NETs) are critical pathogenic factors for arterial and venous thrombosis. Both events are regulated by spleen tyrosine kinase (Syk)-mediated signalling events. Asebogenin is a dihydrochalcone whose pharmacological effects remain largely unknown. This study aims to investigate the antithrombotic effects of asebogenin and the underlying molecular mechanisms. EXPERIMENTAL APPROACH: Platelet aggregation was assessed using an aggregometer. Platelet P-selectin exposure, integrin activation and calcium mobilization were determined by flow cytometry. NETs formation was assessed by SYTOX Green staining and immunohistochemistry. Quantitative phosphoproteomics, microscale thermophoresis, in vitro kinase assay and molecular docking combined with dynamics simulation were performed to characterize the targets of asebogenin. The in vivo effects of asebogenin on arterial thrombosis were investigated using FeCl3 -induced and laser-induced injury models, whereas those of venous thrombosis were induced by stenosis of the inferior vena cava. KEY RESULTS: Asebogenin inhibited a series of GPVI-induced platelet responses and suppressed NETs formation induced by proinflammatory stimuli. Mechanistically, asebogenin directly interfered with the phosphorylation of Syk at Tyr525/526, which is important for its activation. Further, asebogenin suppressed arterial thrombosis demonstrated by decreased platelet accumulation and fibrin generation and attenuated venous thrombosis determined by reduced neutrophil accumulation and NETs formation, without increasing bleeding risk. CONCLUSION AND IMPLICATIONS: Asebogenin exhibits potent antithrombotic effects by targeting Syk and is a potential lead compound for the development of efficient and safe antithrombotic agents.


Assuntos
Fibrinolíticos , Trombose , Humanos , Fosforilação , Fibrinolíticos/farmacologia , Simulação de Acoplamento Molecular , Agregação Plaquetária , Ativação Plaquetária , Plaquetas , Trombose/tratamento farmacológico , Trombose/metabolismo , Quinase Syk/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...